Board Games for Early Mathematics: Place Value

Step by step learning resources for individuals or pairs to use with a helper.

Start at the beginning, and stick to the order given. Skipping is OK if a learner can use the concepts to solve problems. For tips, background info, and an assessment to show if a different section would help, visit ReckonMath.com.

This packet includes these place value games and activities:
Think about place value
Make huge numbers
Which is more? 2-digit numbers
Which is more? 3-digit numbers
Which is less? 2-digit numbers
Which is less? 3-digit numbers
How many tens, how many ones
Find the ones place
Find the tens place
Find the ones or tens place
Identify odd and even 2-digit numbers
Find the value of digits in the ones place
Find the value of digits in the tens place
Find the value of digits in the hundreds place
Find the value of digits in different places, 2-digit
numbers
Find the value of digits in different places, 3-digit
numbers
Ones place, tens place, hundreds place
Use addition to think about place value
One thousands place, ten thousands place, hundred
thousands place
Name numbers to the hundred thousands place

Think about place value

Moving things into groups of ten helps you see how many.

- ○○○○○○

Person A says "Here are 31 dots."

Person B says "Here are 31 dots."

If you had only ten seconds to choose, who would you believe, Person A or Person B?
Person B is easier to believe, because Person B organized the dots using place value: 31 is the same as 3 tens plus 1 one.
Using place value to organize numbers makes keeping track of large numbers much easier.
By the way, Person A was not telling the truth! Count and see.

An adult helper can walk learners through this discussion activity, or learners who are comfortable reading can work on their own or with a partner. Make sure learners have an opportunity to talk about the material before moving on, preferably with an adult helper present to facilitate discussion. Learners who aren't used to talking about a text with a partner can use this method: Put a check mark next to any line that makes sense right away. Now look at one of the other lines. Talk about the line with each other. Can the two of you figure out why it makes sense? If you can, put a check mark by it. If you can't, move on to another line. Keep doing this until you have tried to figure out every line. If any lines still don't have a check mark, ask someone else to help you understand why those lines make sense.

Make huge numbers

This group activity is a fun way to start thinking about place value with numerals. Learners will need a helper. Materials: Seven ten-sided dice. How to play: One learner rolls all seven dice at the same time. Another learner moves one die to the arrow. The helper says the number on the die (for example: " 9 "). Another learner moves another die to the right of the first one, and the helper says the new number (for example: "93" if the new die is showing a 3). Learners continue adding one die at a time, always on the right, and the helper continues telling the learners the name of the new number. Learners may enjoy volunteering their guesses for the names. Example of what a helper might say: "Nine",
 "Ninety-three",
 "Nine hundred thirty-six",
 "Nine thousand, three hundred sixty-two",
 "Ninety-three thousand, six hundred twenty-seven",
 "Nine hundred thirty-six thousand, two hundred seventy-eight",
 "Nine million, three hundred sixty-two thousand, seven hundred eighty-five."

Which is more? 2-digit numbers

\qquad and a \qquad . I will make the number \qquad .

| Player 1
 START | | | | | | | | Player 1
 END |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Which is more? 3-digit numbers

\qquad a \qquad , and a \qquad . I will make the number \qquad .

| Player 1
 START | | | | | | | | | Player 1
 END |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Which is less? 2-digit numbers

\qquad and a \qquad . I will make the number \qquad .

| Player 1
 START | | | | | | | | Player 1
 END |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Player 2 START									Player 2 END

Which is less? 3-digit numbers

\qquad , a \qquad and a \qquad . I will make the number \qquad .

Player 1 START									Player 1 END

How many tens, how many ones

The digits show how many tens and how many ones.

Person B says "Here are 31 dots."

The number 31 means 3 tens and 1 one.
The place in the number 31 where the digit 1 is is called the ones place.
It is not called the ones place because the digit there is 1. It is called the ones place because when a digit is is there, it means how many ones.

The place to the left of the ones place, where the 3 is, is called the tens place, because when a digit is there, it means how many tens.

An adult helper can walk learners through this discussion activity, or learners who are comfortable reading can work on their own or with a partner. Make sure learners have an opportunity to talk about the material before moving on, preferably with an adult helper present to facilitate discussion. Learners who aren't used to talking about a text with a partner can use this method: Put a check mark next to any line that makes sense right away. Now look at one of the other lines. Talk about the line with each other. Can the two of you figure out why it makes sense? If you can, put a check mark by it. If you can't, move on to another line. Keep doing this until you have tried to figure out every line. If any lines still don't have a check mark, ask someone else to help you understand why those lines make sense.

Find the ones place
\qquad . It is in the ones place in the number \qquad .

The number 31 means 3 tens and 1 one. The place in the number 31 where the digit 1 is is called the ones place. It is not called the ones place because the digit there is 1 . It is called the ones place because when a digit is is there, it means how many ones. The place to the left of the ones place, where the 3 is, is called the tens place, because when a digit is there, it means how many tens.
Materials: A ten-sided die, and counters in two colors. How to play: On your turn, roll the die. Find the number with the digit you rolled in the ones place and put a counter on that number. Example: If you roll a 2, find the number with a 2 in the ones place. It is a 32 , so put your counter on the 32. If the other player's counter is already there, you can bump it off. When all the spaces are filled, whoever has more counters on the board wins.the board wins.

Find the tens place
\qquad . It is in the tens place in the number \qquad .

The number 31 means 3 tens and 1 one. The place in the number 31 where the digit 1 is is called the ones place. It is not called the ones place because the digit there is 1 . It is called the ones place because when a digit is is there, it means how many ones. The place to the left of the ones place, where the 3 is, is called the tens place, because when a digit is there, it means how many tens.
Materials: A ten-sided die, and counters in two colors. How to play: On your turn, roll the die. Find the number with the digit you rolled in the tens place and put a counter on that number. Example: If you roll a 3, find the number with a 3 in the tens place. It is a 32 , so put your counter on the 32. If the other player's counter is already there, you can bump it off. When all the spaces are filled, whoever has more counters on the board wins.

Find the ones or tens place

Skill Builders: Find the ones place (PV), Find the tens place (PV)
I rolled \qquad . It is in the number \qquad .
It is in the [ones / tens] place.

CCSS.MATH.CONTENT.2.NBT.A. 1

Materials: One ten-sided die, and counters in two colors.

How to play: Decide which player will take the ones place, and which player will take the tens place. Players take turns. On your turn, if you are the ones place player, roll the die and find a number on the board with your digit in the ones place. If you are the tens place player, roll the die and find a number on the board with your digit in the tens place. Example: If you roll a 4, and you are the ones place player, you could cover the number 14. Or, if you roll a 4 and you are the tens place player, you could cover the number 41. The first player to get four in a row wins. When you finish the game, play again. This time, whoever took the ones place the first time takes the tens place, and whoever took the tens place the first time takes the ones place.

Identify odd and even 2-digit numbers

\qquad is the number. It is [even / odd].

Any number is even if the digit in the ones place is even. Any number is odd if the digit in the ones place is odd. Note: Zero is even. Materials: Two ten-sided dice and two counters. How to play: Each player puts a counter on START. On your turn, roll the dice. If you roll a zero, it means zero. Arrange the dice to make a 2-digit number. If the number is odd, move your counter to the next "odd" circle. If it is even, move your counter to the next "even" circle.
Example: If you roll a 3 and a 4, you could make 34 and move to the next "even" circle, or you could make 43 and move to the next "odd" circle. The first player to land on either END circle wins.

Find the value of digits in the ones place
\qquad . It is in the number \qquad Its value is \qquad .

4	9	8	6	7
3	5	2	0	1
8	4	FREE SPACE	0	9
5	7	1	6	3
2	7	3	4	1

In this game, you practice using the word "value". The value of a digit is how much it is worth in the number it is in. When a digit is in the ones place, it is worth that many ones. So the value of a 3 in the ones place is 3 , the value of a 7 in the ones place is 7, and so on. Materials: Two ten-sided dice, and counters in two colors. How to play: On your turn, roll both dice. Arrange them to make a 2-digit number and say the number. Now, say the value of the digit in the ones place. Cover the value. If the answer is not available, it is the other player's turn. Example: If the dice are showing 26 , the digit 6 has the value of six, so you say " 26 , the value of the 6 is 6 ", and cover a 6 . The first player to get five in a row wins. If the board fills and no one has five in a row, the player with more counters wins.

Find the value of digits in the tens place

I rolled \qquad . It is in the number \qquad . Its value is \qquad .

40	90	80	60	70
30	50	20	0	10
80	40	FREE SPACE	0	90
50	70	10	60	30
20	70	30	40	10

In this game, you practice using the word "value". The value of a digit is how much it is worth in the number it is in. When a digit is in the tens place, it is worth that many tens. So the value of a 3 in the tens place is 30 , the value of a 7 in the tens place is 70, and so on. Materials: Two ten-sided dice, and counters in two colors. How to play: On your turn, roll both dice. Arrange them to make a 2-digit number and say the number. Now, say the value of the digit in the tens place. Cover the value. If the answer is not available, it is the other player's turn. Example: If the dice are showing 26 , the digit 2 has the value of twenty, so you say " 26 , the value of the 2 is 20 ", and cover a 20 . The first player to get five in a row wins. If the board fills and no one has five in a row, the player with more counters wins.

Find the value of digits in the hundreds place
\qquad . It is in the number \qquad Its value is \qquad .

400	500	200	600	800
700	100	300	100	400
600	200	FREE SPACE	500	500
800	0	700	900	600
900	300	400	0	300

In this game, you practice using the word "value". The value of a digit is how much it is worth in the number it is in. When a digit is in the hundreds place, it is worth that many hundreds. So the value of a 3 in the hundreds place is 300 , the value of a 7 in the hundreds place is 700, and so on. Materials: Three ten-sided dice, and counters in two colors. How to play: On your turn, roll the dice. Arrange them to make a 3-digit number and say the number. Now, say the value of the digit in the hundreds place. Cover the value. If the answer is not available, it is the other player's turn.
Example: If the dice are showing 263, the digit 2 has the value of two hundred, so you say " 263 , the value of the 2 is 200", and cover a 200. The first player to get five in a row wins. If the board fills and no one has five in a row, the player with more counters wins.

Find the value of digits in different places, 2-digit numbers
I rolled \qquad . It is in the number \qquad Its value is \qquad .

CCSS.MATH.CONTENT.2.NBT.A. 1
In this game, you find the value of digits in the ones and tens places. Materials: One
ten-sided die, and counters in two colors. How to play: On your turn, roll the die. If you roll a zero, it means zero. Choose a space where one of the digits is what you rolled. Say the number's name, and then say the value of your digit in that number. Example: If you roll a
5, you can choose the space with 51 in it. Say " 51 , the value of the 5 is 50 ." Then, place a counter on that space. The first player to get four in a row wins.

[^0]Find the value of digits in different places, 3-digit numbers
I rolled \qquad . It is in the number \qquad Its value is \qquad .

In this game, you find the value of digits in the ones, tens, and hundreds places. Materials:
One ten-sided die, and counters in two colors. How to play: On your turn, roll the die. If you roll a zero, it means zero. Choose a space where one of the digits is what you rolled. Say the number's name, and then say the value of your digit in that number. Example: If you roll a 5, you can choose the space with 357 in it. Say " 357 , the value of the 5 is 50 ." Then, place a counter on that space.
The first player to get four in a row wins.

[^1]
Ones place, tens place, hundreds place

\qquad is in the ones place, is in the tens place, is in the hundreds place.

When you are saying what digits are in what places, it is a good habit to start with the ones place. This means starting at the right and moving left. That is the opposite of how we read words in English, but it is the best way to say the places in numbers. You say ones, tens, hundreds, starting from the right. Materials: A deck of ten frame cards, and counters in two colors. How to play: On your turn, draw a card and find that square. Now, look at the number and say what digit is in each place. Example: If you draw a 4 , the number is 368 , so say " 8 is in the ones place, 6 is in the tens place, 3 is in the hundreds place." Place a counter in the square next to the number. If your opponent's counter is there, you can bump it out and put your counter there. When all the squares have a counter, the player with more counters wins.

Use addition to think about place value

CCSS.MATH.CONTENT.2.NBT.A. 1 Skill Builders: Previous place value games, Commutative property of addition (A)

My number is

\qquad .
This space has numbers adding up to my number.

12 is the same as $2+10$. You can see this because the number 12 has a 2 in the ones place and a 1 in the tens place. The 2 is the 2 in $2+10$. The 1 is the 10 in $2+10$. Materials: A ten-sided die and two counters. How to play: Each player puts a counter on START. On your turn, roll the die. If you roll a zero, it means ten. On the lookup table below, look for the number you rolled, and find the number to its right. Now jump to the next space where the numbers in the space add up to that number. Example: If you roll a 6 , the number is 186 , so jump to the next space that has a 6, an 80, and a 100 (in any order). The first player to land on END wins.

1 or 2	12
3 or 4	16
5 or 6	28
7 or 8	186
9 or 10	439

One thousands place, ten thousands place, hundred thousands place

\qquad is in the one thousands place, is in the ten thousands place,
\qquad is in the hundred thousands place.
hundred thousands ten thousands one thousands

In this game, you say what digits are in what places in a number. Remember to start at the ones place, which is on the right, and then go left.
Materials: A deck of ten frame cards, and counters in two colors. How to play: On your turn, draw a card and find that square. Now, look at the number and say what digit is in each place. Example: If you draw a 3 , the number is 924,716 , so say " 6 is in the ones place, 1 is in the tens place, 7 is in the hundreds place, 4 is in the one thousands place, 1 is in the ten thousands place, 7 is in the hundred thousands place." Place a counter in the square next to the number. If your opponent's counter is there, you can bump it out and put your counter there. When all the squares have a counter, the player with more counters wins.

Name numbers to the hundred thousands place
I can say the names of very big numbers.

In this game, you say the names of numbers. When you are saying the names of numbers, unlike when you are saying the places, you start on the left.
Example: If the number is 382,761 you start with the 3 and say "Three hundred eighty-two thousand, seven hundred sixty-one." Materials: A deck of ten frame cards, and counters in two colors. How to play: On your turn, draw a card and find that square. Now, look at that number. Say the number's name. Place a counter in the square next to the number. If your opponent's counter is there, you can bump it out and put your counter there. When all the squares have a counter, the player with more counters wins.

[^0]:

[^1]:

